Artículos Técnicos

Influence of the particle shape on the impact force of lahar on an obstacle

Rime Chehade1*, Bastien Chevalier1, Fabian Dedecker2, and Pierre Breul1

Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France

2Itasca consultants SAS, 29 Avenue Joannes Masset, F-69009 Lyon, France

Chehade R, Chevalier B, Dedecker F, and Breul P (2021) - Influence of the particle shape on the impact force of lahar on an obstacle, Powders and Grains 2021, EPJ Web of Conferences 249 , 03010 (2021) -


Lahars represent natural phenomena that can generate severe damage in densely populated urban areas. The evaluation of pressures generated by these mass flows on constructions (buildings, infrastructure…) is crucial for civil protection and assessment of physical vulnerability. The existing tools to model the spread of flows at large scale in densely populated urban areas remain inaccurate in the estimation of mechanical efforts. A discrete numerical model is developed for evaluating debris flow (DF) impact pressures at the local scale of one structure. The large-sized solid particles are modelled explicitly using Distinct Element Method (DEM) and the fine-grained solid particles are integrated in a fluid phase which generates two effects on the movement of particles, i.e. buoyancy and drag. Fluid velocity field and the fluid free surface are obtained from Computational Fluid Dynamics (CFD) code then imported in the DEM simulation in a one way coupling scheme. In this paper, the influence of particle shape on the impact forces generated on the obstacle is investigated: spherical particles and polygonal rigid blocks (r-blocks) are considered. The shape of the particle influences the contact surface and therefore the impact pressure. With an angular shape and several facets like r-blocks, the impact pressure on an obstacle is more important for a flow with the same characteristics.

Últimas noticias
  • Celebramos 40 años con importantes descuentos para nuestros clientes Este año 2021, Itasca International está cumpliendo 40 años de existencia, estamos muy orgullosos de...
    Leer mas
  • Itasca Celebrates 40 Years Itasca is celebrating 40 years of solving geomechanical and hydrogeological challenges through engineering and computer...
    Leer mas
  • Introducing Our New IMASS Constitutive Model The Itasca Constitutive Model for Advanced Strain Softening (IMASS) has been developed to represent the...
    Leer mas

Próximos Eventos
28 oct.
Capacitación online en MINEDW
Modelos Hidrogeológicos Ejercicios y Simulaciones... Leer mas
6 ago.
Itasca Training Collaborations
Quality courses offered outside Itasca.... Leer mas