Aprendizaje

Tutoriales de Software

FLAC3D 7.0 Plot Range Tutorial

This tutorial will show how to create and manipulate plot range elements in FLAC3D. Each plot-item in a plot may have one or more range elements that shows the portion which lies within the defined range, while removing from view the portion of the plot-item that lies outside it. Plot-item ranges may also be copied and applied to other plot-items.

Converting Plots to Data Files

Any model plot that you create interactively by adding plot-items and adjusting settings can be represented by an equivalent set of commands. This is useful should you want to include command-driven plotting in your modeling run.

Working with Building Blocks in FLAC3D 6 (Part 1)

This video demonstrates using a library set of Building Blocks as a starting point for creating a new model. In this example, cylindrical blocks are snapped together to represent a tunnel and intersected with other blocks representing a nearby wall.

Artículos Técnicos

Blast Movement Simulation Through a Hybrid Approach of Continuum, Discontinuum, and Machine Learning Modeling

This work presents a hybrid modeling approach to efficiently estimate and optimize rock movement during blasting. A small-scale continuum model simulates early-stage, near-field blasting physics and generates synthetic data to train a machine learning (ML) model. Key parameters such as expanded hole diameter, burden velocity, and gas pressure are obtained through the ML model, which then inform a discontinuum model to predict far-field muckpile formation. The approach captures essential blast physics while significantly accelerating blast design optimization.

Flowback Test Analyses at the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) Site

Injection testing conducted in 2017 and 2019 at the Frontier Observatory for Research in Geothermal Energy site in Utah evaluated flowback as an alternative to prolonged shut-in periods to infer closure stress, formation compressibility, and formation permeability. Flowback analyses yielded lower inferred closure stresses than traditional shut-in methods and indicated high formation compressibility, suggesting an extensive fractured system. Numerical simulations showed rebound pressure is not necessarily the lower bound of minimum principal stress. Stiffness changes can be identified as depletion transitions from hydraulic to natural fractures. The advantage if flowback is reduced time to closure.

Numerical modelling and seismicity at the Kiirunavaara Mine

What’s happening at the Kiirunavaara Mine?

Últimas noticias
  • Itasca at Balkanmine 2025! Itasca is pleased to announce its participation in the Balkanmine 2025 Conference. Our experts Lauriane...
    Leer mas
  • Itasca has announced the release of FLAC2D v9 Itasca has announced the release of FLAC2D v9, revolutionizing the way we analyze and predict...
    Leer mas
  • Primer Anuncio 6º Simposio Itasca sobre Modelado Numérico Aplicado se llevará a cabo del 3 al 6...
    Leer mas