Learning

Software Tutorials

MINEDW Tutorial (Part 3: Boundary Conditions)

In this tutorial we will take a look at the different boundary conditions available to the user, and we will go over some examples of different scenarios in which they would be used.

Bonded Block Model with Cable Ground Support

Cable elements in 3DEC may be assigned a tensile yield force limit and an axial rupture strain in order to simulate cable rupture. 3DEC can also simulate the shearing resistance along the cable length between the grout and either the cable or the host material.

Proppant in Fluid Filled Joints

The transport and placement of proppant within fractures is modeled in 3DEC by representing the proppant and fracturing fluid as a mixture.

Technical Papers

Numerical Models as Important Component of EGS Design and Operation

Calibration of geomechanics models using microseismic data is key to creating reliable predictive tools. This presentation reviews the geomechanical model used for: stress characterization, microseismic modeling to assess the risk associated with faults activation and induced seismicity, and evaluation of designs and operational strategies. Both hydraulic fracturing and hydro-shearing of discrete fracture network were important components of stimulation of EGS and zonal isolation can play a key role in effective stimulation of an EGS along the entire length of the horizontal well.

FLAC3D mesh and zone quality

Mesh quality is crucial for the stability, accuracy, and fast convergence of numerical simulations. However, given the geometrical complexity of some models and the tools available for mesh creation, it is often necessary to accept meshes that deviate significantly from the known ideal shape.

Blast Movement Simulation Through a Hybrid Approach of Continuum, Discontinuum, and Machine Learning Modeling

This work presents a hybrid modeling approach to efficiently estimate and optimize rock movement during blasting. A small-scale continuum model simulates early-stage, near-field blasting physics and generates synthetic data to train a machine learning (ML) model. Key parameters such as expanded hole diameter, burden velocity, and gas pressure are obtained through the ML model, which then inform a discontinuum model to predict far-field muckpile formation. The approach captures essential blast physics while significantly accelerating blast design optimization.

Latest News
  • Itasca at Balkanmine 2025! Itasca is pleased to announce its participation in the Balkanmine 2025 Conference. Our experts Lauriane...
    Read More
  • Itasca has announced the release of FLAC2D v9 Itasca has announced the release of FLAC2D v9, revolutionizing the way we analyze and predict...
    Read More
  • 6th Itasca Symposium on Applied Numerical Modeling The next Itasca Symposium will take place June 3 - 6, 2024, in Toronto, Canada....
    Read More