Microstructural Analysis

One of the main advantages of the discrete approach as defined by Itasca (PFC) is that it allows to accurately reproduce the size distribution, the grain shape (rounded, angular, or elongated), the mineralogical composition, as well as the mechanical and thermal properties of each mineral.

Thanks to this accurate description, it is possible to study the maximum compaction of a granular packing or the agglomeration of a powder under vibration/compression, to reproduce a real fibrous structure obtained from 3D tomographic images or the microstructure of composite materials. The relationship between the microstructure and target macroproperties—such as mechanical strength under various loadings (compression, tension, bending test), permeability, or electrical resistivity— can thereafter be investigated, and optimizations proposed.

Discrete modelling of fibrous structure from 3D tomography images: PFC3D model (on the left) and photograph of a real sample (on the right).
FBD specimen of a baked anode material (PFC2D model).
Latest News
  • Itasca has announced the release of FLAC2D v9 Itasca has announced the release of FLAC2D v9, revolutionizing the way we analyze and predict...
    Read More
  • 6th Itasca Symposium on Applied Numerical Modeling The next Itasca Symposium will take place June 3 - 6, 2024, in Toronto, Canada....
    Read More
  • Itasca International Inc. announces the Selection of its New CEO Itasca International Inc. announces the Selection of its New CEO ...
    Read More

Upcoming Events
22 Oct
Getting Started with 3DEC
Objectives of the training: Understand the 3DEC numerical approach and the types of problems it can solveKnow how to manipulate the 3DE... Read More
5 Nov
Python in Itasca Software
Objectives of the Training:Ability to use Python to extend modeling capabilities with the Itasca codes.... Read More
19 Nov
Getting Started with FLAC2D/FLAC3D
This training is an introduction to continuous modeling with FLAC2D and FLAC3D. At the end of the course, participants will master the ... Read More