Continuum numerical modeling is inherently limited when the rock behavior involves mechanisms such as spalling and bulking. The Bonded Block Model (BBM) approach simulates the initiation of cracks that can coalesce and/or propagate leading to extension and shear fracturing, as well as the rock (e.g., intact, jointed, or veined) strength dependency on confinement.
A major use of DFN models for industrial applications is to evaluate permeability and flow structure in hardrock aquifers from geological observations of fracture networks. The relationship between the statistical fracture density distributions and permeability has been extensively studied, but there has been little interest in the spatial structure of DFN models, which is generally assumed to be spatially random (i.e., Poisson). In this paper, we compare the predictions of Poisson DFNs to new DFN models where fractures result from a growth process defined by simplified kinematic rules for nucleation, growth, and fracture arrest.
This paper presents the formulation of a constitutive model to simulate the behavior of foliated rock mass. The 3D elastoplastic constitutive model, called Comba, accounts for the presence of arbitrary orientations of weakness in a nonisotropic elastoplastic matrix.